Vanderley Nemitz
Curitiba - PR

 

Certa vez, quando eu tinha 15 anos, um amigo da minha família afirmou que sabia fazer contas mentalmente e com muita rapidez. Para “provar” isso, propôs a seguinte brincadeira:

“Vou escrever um número com sete algarismos. Em seguida, você escreve, abaixo do meu número, outro número com sete algarismos. Repetimos isso mais uma vez, eu escrevo meu terceiro número e, então, eu direi a você, sem fazer cálculos, qual é o valor da soma dos cinco números”.

Eu, um tanto desconfiado, aceitei a proposta, ocorrendo o seguinte:

1 número escrito por ele:
3 574 186
1 número escrito por mim:
1 247 064
2 número escrito por ele:
8 752 935
2 número escrito por mim:
4 955 231
3 número escrito por ele:
5 044 768
Soma fornecida por ele:
23 574 184

Conferi a soma manualmente e constatei que estava correta. Fiquei atônito observando aqueles números por alguns instantes, mas nada consegui concluir. Ele propôs outra conta e novamente acertou o resultado em poucos segundos. Claro que eu sabia (ou desconfiava) que existia algum truque por trás daquilo, mas fiquei por alguns anos sem saber qual era. Vamos agora mostrar que, na realidade, tudo não passa de um pouquinho de álgebra: observe que o segundo e o terceiro números escritos por ele são construídos a partir do anterior, de modo que a soma com o anterior seja igual a 9 999 999. Veja:

1 número escrito por mim + 2 número escrito por ele

1 247 064 + 8 752 935 = 9 999 999

2 número escrito por mim + 3 número escrito por ele

4 955 231 + 5 044 768 = 9 999 999

Observe agora que, como 9 999 999 = 10 000 000 − 1, a soma total é igual a: primeiro número somado + 2 × (10000000 − 1) = 20 000 000 − 2, ou seja, (3 574 186 + 20 000 000) – 2 . Para efetuar a soma entre parênteses, observando que o número de zeros em 20 000 000 é igual ao número de dígitos do número inicial, basta acrescentar o dígito 2 na frente do número original, o que resulta em 23 574 186. Subtraindo 2, obtemos a soma.

Note que, para realizar a última operação, no caso em que o algarismo das unidades do primeiro número é maior do que ou igual a 2, basta subtrair 2 do algarismo das unidades, mantendo os outros dígitos inalterados. Se ele for 0 ou 1, então a subtração é um pouco mais complicada, sendo necessário “emprestar” 1 do algarismo das dezenas para depois subtrair 2. Como 10 − 2 = 8, isso é equivalente a subtrair 1 do algarismo das dezenas e somar 8 ao algarismo das unidades, se esse não for nulo. Se o algarismo das dezenas for nulo, então é preciso emprestar 1 do algarismo das centenas e assim por diante.

Observe que, no caso do desafio proposto pelo amigo de minha família, o número inicial é 3 574 186. Colocando 2 no início, obtemos 23 574 186. Subtraindo 2 do algarismo das unidades, obtemos 23 574 184, que é a soma procurada.

Se alguém o desafiar, você pode tentar dificultar o trabalho para o desafiante dizendo: “Quero ver se você acerta o resultado no caso do primeiro número escrito ter o algarismo das unidades menor que 2, ou seja, igual a 0 ou 1, e o das dezenas nulo”. Isso testará se ele entendeu realmente como funciona o truque, que pode ser adaptado facilmente para o caso de mais dígitos ou para um número maior de somandos. Deixamos para o leitor esse trabalho.

 

 

Referência bibliográfica

IMENES, L. M. Brincando com números. Editora Scipione: 1987.